Heat of Vaporization Measurements for Ethanol Blends Up to 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines

نویسندگان

  • Gina M. Chupka
  • Earl Christensen
  • Lisa Fouts
  • Teresa L. Alleman
  • Matthew A. Ratcliff
  • Robert L. McCormick
چکیده

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline. Performance properties and composition of the blendstocks and blends were measured, including research octane number (RON), motor octane number (MON), net heating value, density, distillation curve, and vapor pressure. RON increases upon blending ethanol but with diminishing returns above about 30 vol%. Above 30% to 40% ethanol the curves flatten and converge at a RON of about 103 to 105, even for the much lower RON NG blendstock. Octane sensitivity (S = RON MON) also increases upon ethanol blending. Gasoline blendstocks with nearly identical S can show significantly different sensitivities when blended with ethanol. HOV was estimated from a detailed hydrocarbon analysis (DHA) as well as using a differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) method. The DHA method allows relatively straight-forward estimation of fuel composition and temperature effects, and errors are estimated at less than 10%. The DSC/TGA produces results in good agreement with DHA, and can provide HOV as a function of fraction evaporated. A striking feature of the HOV results was the insensitivity of HOV to the hydrocarbon blendstock for temperatures up to 150°C all four hydrocarbon blendstocks had essentially the same HOV in kJ/kg and exhibited the same HOV response to blending with ethanol. HOV is much less variable than RON or S. HOV at 20% evaporated from the DSC/TGA experiment appeared to be unaffected by ethanol content while HOV at 50% evaporated increased monotonically with ethanol content. CITATION: Chupka, G., Christensen, E., Fouts, L., Alleman, T. et al., "Heat of Vaporization Measurements for Ethanol Blends Up to 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines," SAE Int. J. Fuels Lubr. 8(2):2015, doi:10.4271/2015-01-0763. 2015-01-0763 Published 04/14/2015 Copyright © 2015 SAE International doi:10.4271/2015-01-0763 saefuel.saejournals.org NREL/CP-5400-63091. Posted with permission. Presented at the SAE 2015 World Congress & Exhibition, 21–23 April 2015, Detroit, Michigan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Investigation of Spark Ignition Engine Fueled with Ethanol/Iso-octane and Methanol/Iso-octane Fuel Blends

Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol and methanol are known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol and methanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types ...

متن کامل

Imaging and Analysis of Auto-Ignition and Heavy Knock in a Full Bore Optical SI Engine

The work involved a fundamental study of auto-ignition under unusually high knock intensities for an optical spark ignition engine. The single-cylinder research engine adopted included full bore overhead optical access capable of withstanding continuous peak in-cylinder pressures of up to 150bar. A heavy knock was deliberately induced under relatively low loads using inlet air heating and a pri...

متن کامل

The Effects of Ethanol–gasoline Blend on Performance and Exhaust Emission Characteristics of Spark Ignition Engines

The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), ...

متن کامل

Rate of Pressure Rise in SI Engine Cylinder and its Relation to Knock (RESEARCH NOTE)

Tremendous efforts have been devoted to study the complex phenomenon "knock in spark ignition engines. There is an increasing interest in providing some tools to study knock in simulated data. In the previous studies, engine cylinder pressure oscillation has been used to investigate knock. Unless those methods involved highly complex non-detailed chemical relations, the previous studies were de...

متن کامل

Combined effect of ignition and injection timing along with hydrogen enrichment to natural gas in a direct injection engine on performance and exhaust emission

To improve the engine performance and reduce emissions, factors such as changing ignition and injection timing along with converting of port injection system to direct injection in SI(spark-ignited) engines and hydrogen enrichment to CNG fuel at WOT conditions have a great importance. In this work, which was investigated experimentally (for CNG engine) and theoretically (for combustion Eddy Bre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015